If it's not what You are looking for type in the equation solver your own equation and let us solve it.
4q^2+16+16q=0
a = 4; b = 16; c = +16;
Δ = b2-4ac
Δ = 162-4·4·16
Δ = 0
Delta is equal to zero, so there is only one solution to the equation
Stosujemy wzór:$q=\frac{-b}{2a}=\frac{-16}{8}=-2$
| 3*20+x*100=11040 | | 5n^2=70 | | 48=7x-6 | | 3²+b²=25² | | (2q-4)^2=0 | | (2q-4)(2q+4)=0 | | 5x^2-2x+224=0 | | 6x-2/x=1 | | x=2,2x+1 | | -5f-4=-35 | | H²-6h=16 | | (9/16)^x=-633/4 | | 9x-2(x+5)=11 | | 44-2x=14 | | (x-2)(x+4)-(x+3)2=3 | | r²-100=0 | | 3x²+6=-9 | | 3+2p-5p=3-3p | | 5f-f+2f=4f+2f=6f | | 9x-7=2x-5(3x-6) | | 12y16=20y | | 2x+6=11+7x | | (2+3)(4-x)-3x(3-x)=0 | | 5x-2=8(x+1) | | 4x-7=9+6x | | 2(3/2-2x)=-13 | | 16-3a=-11a | | 3x×x=8x | | 3-8x=9x | | x-x=58 | | 8y-3=11 | | 3x15=30 |